running costs

Homage to Catalonia: A pre-fab straw bale Passive House 'first' for the region, by Oliver Style, ProGETIC

The Larixhaus is the first pre-fabricated straw bale passive house on the Iberian Peninsula. A project that took 7 months from start to finish, this single family home is located in the town of Collsuspina, Catalonia, Spain. Through careful bio-c1imatic design, thermal insulation with straw, an airtight envelope and high-performance windows, the Larixhaus has a projected space heating demand (calculated with PHPP) of 15kWh/m2 .a, approximately 80% less than that required by current Spanish building regulations. The project is a modest, but inspiring example of deep-green energy efficient construction, in preparation for the EU's 2020 deadline, when all newly built homes will need to be 'nearly zero energy'. Oliver Styles reports...

He huffed and he puffed...

Jordi, Itziar and their two daughters live in a small town in the hills above Barcelona, between rolling pine forests and burnt sienna escarpments. Renowned for its cool winters and even colder traditional stone houses, the area has been witness to one of the greener construction projects to have taken place in recent years south of the Pyrenees: the Larixhaus, Spain's first prefabricated straw bale and timber passive house. As straw bale building gains momentum in central Europe, with ground- breaking work from ModCell, White Design, LILAC and the University of Bath, the Larixhaus is a modest but determined example that timber and straw bale construction can move beyond the pigeon-hole of one-off self-builds and contend in the mainstream of beautiful, low-impact, energy efficient architecture. A simple, compact home which, despite the huffing and puffing of the big bad wolf, is set to brave the elements of this Mediterranean mountain region and place nearly zero energy construction on the map in preparation for the EU's 2020 deadline.

Early design: where the first steps count

The client's priority, from the outset, was to bring together a group of professionals with experience in timber and straw bale Passivhaus construction, who could design and build a small home at reasonable cost, where natural, renewable materials were married with a high level of energy efficiency and indoor comfort. In the early design stage, a simple and relatively compact building form was chosen, with 339m2 of thermal envelope enclosing a gross exterior volume of 437m3 over two floors, for a form factor of 0.78. The longest dimension of the building was aligned east-west, to provide maximum day lighting and reduce artificial lighting loads, resulting in a building aspect ratio of 1:1.3.

A location specific climate file was generated with the Meteonorm software and compared with the last 10 years of data from a weather station located 6km from the site, showing good agreement. Shading from nearby mountains was taken into account using a topographical horizon profile. The climate data was then entered into the PassivHaus Planning Package (PHPP) energy simulation and certification tool, for early stage design modelling and analysis.

Contrary to the orientation of all other homes of the street, the building's southern and most highly glazed facade was orientated perfectly south. PHPP modelling provided the required surface area of southern openings to take advantage of free solar heat gains in the winter. A combination of design strategies were modelled and tested for maintaining summer comfort with no active cooling.

To enjoy the spectacular views west to the jagged rock formations of Montserrat and east to the Montseny mountains, bedrooms are located on the ground floor, with a diaphanous kitchen, dining and living room space on the first floor. Wet rooms (bathroom and kitchen) are located in the same vertical plane, to reduce pipe runs and minimise heat losses in the domestic hot water system. To provide full fresh-air ventilation with minimal heat losses in the winter, a whole house ducted heat recovery ventilation system was chosen: careful early planning of duct routing made sure the duct lengths were kept to a minimum, reducing cost and energy losses. Operable windows on the east, north and western facades provide natural ventilation in the summer and sufficient natural light in all habitable rooms.

The skin: timber and straw bale

The timber superstructure and external cladding is PEFC certified, and was laser cut to order and delivered to the Farhaus workshop for prefabrication, 1 5km from site. The straw bales are 1200 mm x 700 mm x 400 mm, positioned vertically in the timber frame structure. The bales were sourced 1 25km away on the Costa Brava. The bales are enclosed on the outside with wood fibre breather board, followed by a 35mm ventilated gap and larch rain-screen cladding, fixed on timber battens. The ventilated wall reduces transmission heat gains in the summer and provides an exit for water vapour in the building structure - an important design consideration to avoid interstitial moisture build-up and condensation damage in straw bale construction. On the inside, the bales are shut in with 22mm formaldehyde-free OSB that acts as the air tight layer. Finally, Fermacell gypsum fibre board, over a service void, provides a dry-lined internal finish. Structural timber that spans the thermal envelope is thermally broken with cork insulation.

Two straw bale roof cassettes, with the bales positioned in the same direction as the walls, provide a thermally efficient roofing system, finished with clay tiles over a ventilated air gap, reducing transmission heat gains and summer overheating. Gravel infill on the intermediate floor adds some thermal inertia, although with the air-tightness and thermal insulation specification, combined with careful design of openings with external blinds, the building's thermal mass (calculated as 84Wh/K for every m2 of Treated Floor Area) was calculated as sufficient for maintaining summer comfort with natural ventilation. Given the site's altitude at 888m, peak summer temperatures are lower than coastal Mediterranean regions, averaging only 20°C in July and August. PH PP modelling showed that with no active cooling and a combination of glazing with a solar factor of 47%, external blinds on southern openings, and natural night ventilation, summer overheating frequency (when the indoor air temperature exceeds 25°C) could be kept below 3%, equivalent to a total of 36 hours in which the indoor ambient temperature rises above 25°C.

Despite not meeting the environmental criteria established between the client and design team, the most cost effective and thermally efficient solution for the floor slab was found to be 130mm of rigid polystyrene under the slab with perimeter insulation of 60mm around the edge of the slab.

The testing of alternative design strategies with PH PP modelling showed that an acceptable balance of heat gains and losses was achieved with triple glazing (with two low-e coatings, argon gas filling and TGI warm spacers), for a centre-pane U-value of 0.65W/m2.K and solar factor of 47%. Soft-wood Farhaus frames provide a U-value = 1.00W/m2.K, with cork insulation to reduce installation thermal bridges. The average installed window U-value is 1.06W/m2.K, not enough for cold' central European climates but sufficient in the Collsuspina climate to meet the comfort and hygiene requirements set by the Passivhaus standard.

The average weighted thermal transmittance of the building envelope is U-value = 0.21 1 W Im2K. The door blower test gave an impressive result of n50 = 0.32ACH (air changes per hour). Cold bridges were eliminated or reduced with modelling and optimisation in the design phase.

The building shell was prefabricated in the Farhaus workshop over a period of 6 weeks. It was divided into 10 separate modules, with the air tight layer and window frames installed and sealed. The modules were transported to site and the basic structure was assembled in two days. Pre-fabrication minimises on-site construction times, providing cost savings and near-zero on-site waste. The Larixhaus' embodied energy and C02 emissions derived from materials are minimised by prioritising natural, non-toxic, renewable materials with minimum processing (certified timber, locally sourced straw, cork, and gypsum fibre board).

Indoor air quality, acoustic comfort and active systems

Healthy indoor air quality is achieved through the use of non-toxic, Iow-VOC, natural materials. Exposed timber inside the home is either untreated or coated with water-based varnish. Healthy materials are combined with whole house ducted heat recovery ventilation to provide efficient, comfortable full fresh air ventilation during the winter. Cool air is brought into the home and pre-heated by outgoing stale air through a Passsivhaus Institut certified Zehnder Comfoair 350 ventilation unit, with an installed sensible heat recovery rate of 79%. PHPP simulations showed an average seasonal COP of 9. Efficient DC fan motors are essential for reducing electricity consumption: calculations showed that, given an average of 4,700 hours of operation per annum, at an air change rate of 0.40 (91 m3/h), the unit will consume only £31 of Spanish electricity each year (where household electricity is the 3rd most expensive in Europe). The ventilation unit is fixed on acoustically insulated mounts and located in the service cupboard by the entrance on the ground floor. Silencers on the indoor air supply and return ducts, combined with adequate duct sizing to control air velocities, means the system has a maximum measured sound pressure level of 33dB(A) in living spaces. The result is a quiet, discrete and efficient comfort ventilation system.

The near-zero heating demand is met by two low-cost 500W wall-mounted electric radiators in each bedroom, and one 450 W electric towel radiator in the bathroom. On the first floor, a 4kW air-tight log stove (that modulates down to 2kW) with a twin-walled concentric chimney flue, provides heat on very cold days, without compromising air tightness. Hot tap water is produced by a compact air-source heat pump unit with a COP of 3.75 (@ air = 15°C and water = 45°C) and a heat store of 300 litres. The air intake of the heat pump is located just above the stale air outlet of the ventilation unit, providing some performance improvement. The clients have set timing controls on the heat pump to make sure it does not activate between 1 1 pm and 8am in the winter, to avoid poor 'performance when outdoor air temperatures are low. Following 3 months of use, there has been sufficient hot water to meet daily demand with this control strategy.

Cooking is done on an induction ceramic cooktop with a re-circulation cooker hood. Artificial lighting is with LEDs and all white goods are A++. If the Spanish government decides, at some point in the future, to reverse the current legislation and encourage the use of renewable energy technologies rather than bending to the pressure of the large energy companies, the clients intend to install a grid-tied photovoltaic array to achieve a net zero energy balance. When the budgets allows, a rain water catchment system will follow suit (pre-installation was done during construction) .

Beyond PHPP and into the real world

A remote monitoring system will be installed in the coming months, providing quantitative data over a 2-year period, monitoring outdoor temperature and humidity, indoor temperature, humidity and C02 levels, together with electrical energy consumption for space heating, ventilation, hot tap water, lighting and equipment. It will be particularly interesting to see the in-use summer performance of the building.

Meanwhile, feedback to date from the clients shows that with outdoor night time temperatures reaching -1°C, indoor temperatures have remained above 20°C with no active heating, as long as there is some sun during the day. For successive days with no sun, they turn on the electric radiators for half an hour at night and in the morning, to maintain comfort. The first test of the log stove ended with Itziar opening the windows as it got too hot in the sitting room (!), confirming the PHPP calculated peak heating load requirement of 11 W 1m2. At least during this first mild winter, the stove seems largely redundant. The specific construction cost of the build has come in at around £1,005/m2, an estimated 14% more costly than building to current regulations in Spain. This gives an approximate simple payback time of just under 9 years, for a building with an expected useful life of 80 years.

So goes the story of the Larixhaus: a green-building homage to Catalonia and its rich history, number 10 in a growing list of healthy, comfortable, Passivhaus constructions south of the Pyrenees.

Oliver Style

Useful links:

WWW.PROGETIC.COM

WWW.LARIXHAUS.CAT

WWW.FARHAUS.COM

WWW.KLlMARK.COM

WWW.CONSTRUCTION21.EU/ CASE-STUDIES/ES/LARIXHAUS-STRAW-BALE­AND-TIMBER-PASSIVE-HOUSE.HTML

WWW.PASSIVHAUSPROJEKTE.DE/#D 3874

Project team:

Client: Jordi Vinade, Itziar Pages

Architecture: Nacho Mart, Maria Molins, Oriol Mart.

Passivhaus design, PHPP analysis, M&E: Oliver Style, Vicenc Fulcara - ­ProGETIC SCP

Contractor: Albert Fargas - FARHAUS

5tructural Engineering: Manuel Garcfa Barbero - Klimark Architectural Consultant: Valentina Maini

Project Spec:

Energy standard: PassivHaus new build Location: ColIsuspina, Barcelona, Spain Treated floor area (PHPP): 92m2 Construction type: timber construction Completion date: December 2013 Completion time: 7 months

Space heating demand (PHPP): 15kWh/(m2a) 5pace cooling demand (PHPP): 3.2kWh/(m2a) Heating load (PHPP): 11W/m2

Cooling load (PHPP): 3.9W/m2

Primary energy requirement (PHPP): 96 kWh/(m2a) Construction costs (gross) [1m2]: 1211/m2

Air tightness (n50): 0.32ACH

Envelope information:

Exterior wall: U-value: 0.127 W/m2.K: in> out

  • 13mm plasterboard (Fermacell)
  • 35mm service void between timber battens at 8%
  • 22mm 05B 4 [air-tight layer]
  • 400mm straw bale insulation [052] between timber joists at 8%. thermally broken with cork insulation [040]
  • 16mm wood fibre breather board (DFP Kronolux) Wind tight membrane and ventilated larch rain screen cladding, flxed on external timber battens

Floor slab: U-value: 0.165 W/m2.K: bottom> top

  • 130mm XP5 insulation [034]
  • 350mm reinforced concrete floor slab
  • 80mm Pavaflex wood fibre insulation [038] between timber joists at 10 %
  • 22mm timber flooring
  • 60mm XP5 insulation [034] around the edge of the floor slab

Roof: U-value: 0.122W/m2.K: bottom> top

  • 15mm timber board (Fir) 22mm 05B 4 [air-tight layer]
  • 400mm straw bale insulation [052] between timber joists at 2% 16mm wood fibre breather board (DFP Kronolux)
  • Timber battens and roof tiles

Windows / doors

  • Farhaus, Fargas window frames
  • 50ft-wood laminated wooden window frames (90mm)

Uframe = 1.00W/m2.K

Average U- value window = 1.06W/m2.K

  • Triple glazing. with two low-e coatings and argon gas fllling; 33.2/16argon/4/16argon/4; TGI warm spacer

U-value glazing = 0.65W/m2.K

g-value = 47%

Entrance door - Farhaus: Fargas door

  • Triple glazed entrance door with identical speciflcation as windows

Udoor = 1.00 W/m2.K

Ventilation

  • Zehnder ComfoAir 350 Luxe
  • PHI certifled ducted whole house mechanical ventilation with sensible heat recovery
  • Distribution in HDPE 90mm pipes

Heating system

  • Ground floor: electric radiators
  • First floor: Rika Passiv blomass stove

Domestic hot water system

  • Theodoor Aerotermo 300 Plus
  • 3.6kW thermal compact air source heat pump unit, with backup electric immersion heater.

Oliver is a certified PassivHaus designer/energy consultant and co-founder of ProGETIC, an engineering practice based in Barcelona, Spain. He specialises in passive design and building performance optimisation through energy model­ling. He has an MsC with distinction in architecture, with the Centre of Alternative Technology and University of East London. He enjoys working closely with designers, developers, engineers and free thinkers who want to build or renovate beautiful, healthy, comfortable buildings with low running costs. - OSTYLE@PROGETIC.COM

Style, O. (2014) ‘Homage to Catalonia: A pre-fab straw bale passive house 'first' for the region’, Green Building Magazine, vol. 23, Spring 2014, pp. 20-24.

 

Does Passive House Require a New Design Language?

Architect Paul McAlister

Architect Paul McAlister

The movement of building standards towards passive house and rising fuel prices are the main initiatives driving the construction industry in the direction of certified passive house standard within Northern Ireland. It is an attractive aspiration for us within the construction and design industry to be at the forefront of low carbon design and passive house design in Northern Ireland, whilst making positive contributions to C02 emissions. Fully pursuing this standard within this industry would also open up export markets for our knowledge, skills and products, however in any potential advance towards an implementation of passive house there are many issues to be considered. The first issue is the capital cost of a passive house build. It is not possible to put a figure on the extra cost for a passive house building over a conventional building which barely complies with the 2008 Building Regulations. This would be far too simplistic. Cost depends on a whole host of variables, which includes the private residential sector, passive house clients generally insist on high quality fixtures and fittings. For example, the extra cost for passive house standard windows over standard triple glazed windows, may be due to improved functionality alongside achieving the energy standard and the criteria of passive house certification.

Those taking up the challenge and aspiring to build to passive house standard should have a clear idea of the budget limitations surrounding their project and the space requirements that budget will deliver. However, many designs, despite the best efforts to optimise design and energy modelling, will always fall short of certification. Often additional improvements which move the design towards certification don’t quite make the passive house threshold for space heating demand of 15kWh/m2/yr. Having a heat demand slightly higher than the threshold, at say 18kWh/m2/yr may have slightly higher running costs, but they are minimal when compared with capital costs of finding the final 3-5kWh in some cases. Each individual project must weigh up their capital expenditure versus running costs to decide what is best for them. When the site condi­tions and design strategy produce a performance for heat demand that falls inside the passive house criteria then certification becomes a simpler process. However if the threshold is missed by a few kilowatt hours, resulting in the design being un­able to deliver the space heating solely through the ventilation system, it may be better suited to add a secondary heat source whilst still achieving a high performance building. With unusually cooler winters predicted for the coming decade, having some extra, user-controlled, heat contributors such as the addition of a couple of radiators may be beneficial.

Another issue of the application of passive house is design, which by its nature is subjective to the client and architect. A number of bespoke, architect-designed homes are being certified within Northern Ireland, which is a promising sight. However it is difficult to imagine standard ‘off the shelf’ designs being replaced with homes designed to optimise site and energy performance. Passive house can be adapted to every conceivable style of building with the emphasis placed by the passive house modelling tool on efficient building envelopes and internal layout and orientation. This could place added expense on those restricted to single storey buildings by planning. The proposition as to whether or not ultra-low energy buildings will require a new design language and how they will contribute to urban and rural landscapes is an unknown factor. It is important that planners are educated to recognise this new typology of building that may deviate in form from designs favoured today for example, by having a design that does not necessarily face the road.

The regulatory compliance, concerned with the recognition of passive house can be an issue. The two equivalent energy performance methodologies within building regulations have shared objectives to considerably reduce energy use, but actually have conflicting methods. Passive house comes with a difficult certification process, requiring air leakage testing after completion and evidence of installed insulation. It provides a model for inspection of low energy builds to ensure that adequate attention to detail is applied. Passive house prioritises minimisation of heat loss above all else, while the SAP methodology for Part F compli­ance is not as strict on fabric and ventilation heat loss but puts a high emphasis on the use of renewables. The English version of Part L 2011 came into effect in October 2010 with enhanced standards of performance required. A proposed solution to these conflicting methodologies is that the passive house standard could be recog­nised as an alternative method of compliance with the new Part L. This could provide a pos­sible strategic move by government to support the potential of the pas­sive house building sector by moving building regulation in line with the requirement of passive house certification.

The final issue concerns knowledge of pas­sive house building procedure. There is an education process needed to show how passive house standard buildings and its retrofit equivalent EnerPHit are achieved. The responsibility of propagating this information needs to be taken up by our enthusiastic designers and architects. It would be desirable if funding for research of new, more cost-effec­tive materials and technologies is secured and buildings already complete and in use at this standard should be monitored.

The point where every new building and renovation is a certified passive house may never become a reality, however it is not the attainment of certification that's important but the aspiration to go as far as is practical within the limitations of each project. It is therefore vital to accept no less than ultra low energy buildings in an attempt to make our entire building stock practically passive house standard; this would put into practice now what building regulations will eventually catch up with in the future.

Paul McAlister

Passivhaus vs Code for Sustainable Homes

Many people appear confused about how PassivHaus and the code for sustainable homes can run in parallel, 'Does one compliment the other?’

To obtain the definitive answer, we need to remember that us that Passivhaus focuses on building fabric and performance without the use of renewable technology. Typically a PassivHaus will achieve code energy rating of level 4 or 5. This means that it is an ideal methodology for achieving the higher level of the overall code rating, whilst also minimising the cost of renewables.

Principles And Performance

The term 'PassivHaus' refers to a specific construction standard for buildings which have excellent comfort conditions in both winter and summer. These principles can be applied not only to the residential sector but also to commercial, industrial and public buildings. For houses, it is claimed that this is the world's leading standard in energy efficient construction. They are designed and built using a step-by-step approach with efficient components and a whole house ventilation system to achieve exceptionally low running costs to create something which is comfortable, healthy and sustainable.

There's an interesting article in Green Building Magazine www.greenbuildingpress.co.uk written by Justin Bere about a talk given in London by Wolfgang Feist who founded the German PassivHaus Institute in Darmstadt.

The fundamental objective of PassivHaus design is unambiguously to cut energy consumption and to provide accurate design tools to measure the expected energy consumption in a clear, accurate, numerical way. Germans really don't have time for vagueness and are aware of the requirements set out in UK Building Regulations. However many of our Code level features are incorporated, no one can circumnavigate the essential requirement to produce a building designed to use less than 15kWh/m2/annum supplementary heat and no more than 120 kWh/m2/annum primary energy [total of heating, lighting, hot water, appliances and any cooling). No box ticking wood chip boiler - nothing will let the PassivHaus architect, developer or builder circumnavigates this fundamental, verifiable bottom-line requirement for PassivHaus certification.

The simple techniques necessary to achieve PassivHaus design are: Insulation [typically 30cm thick]; PassivHaus windows [airtight, triple glazed with thoroughly insulated frames achieving an overall U-value of 0.8 including the frame]; Airtight construction [max 0.6 air changes/hr under 50 pascals pressure] with very efficient mechanical heat recovery ventilation. Assuming that these three main performance targets are met, together with detailing to eliminate cold bridging and numerous other detailed requirements prescribed by the PHPP software, it is possible to eliminate the need for a boiler and the need for radiators or underfloor heating.

Comparing certain other UK building codes with the PassivHaus approach highlights difficulties in the UK codes that have been introduced in relative haste. By contrast the PassivHaus code has passed the test of time and Dr Feist is very careful to ensure that it remains truly robust. It is the very robust nature of the concept and the software that led the RIBA in a sustainability review to originally describe PassivHaus as 'The emerging European Standard.' Now there are about 17,000 buildings have been constructed worldwide, typically achieve an energy saving of 90% compared to existing housing principles.

The NHBC Foundation and Zero Carbon Hub have published 'A practical guide to building airtight dwellings'. It brings together the experiences of those who have already got to grips with air tightness for the benefits of designers and builders who have not. It provides solutions for common air leakage paths. Clearly, changes in the Building Regulations have now made air tightness an issue which cannot be ignored.

The Denby Dale Project

Typically, PassivHaus buildings are built using timber-frame construction or blockwork wall with external render. Green Building Store has succeeded in adapting the PassivHaus approach to British traditional building methods - by creating the first certified PassivHaus in the UK to use traditional cavity wall construction. Earlier this year the Denby Dale PassivHaus project in West Yorkshire received its official PassivHaus certification.

The project - built by Green Building Store's construction division Green Building Company - has pioneered the combination of low energy PassivHaus methodology with standard British cavity wall construction and building materials. Bill Butcher, Director of Green Building Store, said, "We chose cavity wall construction because most British builders are familiar with the technique and materials could be sourced easily from any builders' merchant. Cavity wall also met Yorkshire planning requirements for stone exteriors and was affordable for our clients. In addition, masonry construction, including cavity wall, offers a 'cave effect' which acts as a thermal mass, helping to keep temperatures stable in winter and summer".

It requires minimal heating - using 90% less energy for space heating than the UK average; £141 K build cost for the 118m2 three-bed detached house. Green Building Store's technical film 'PassivHaus low energy building in the UK' for building professionals is freely downloadable from www.greenbuildingstore.co.uk. The 60 minute film covers all stages of construction of the Denby Dale project.

What are the challenges?

Achieving the required level of air tightness, minimising the risk through good design and specification.

Is it costly to build?

European experience suggests an extra 6% is likely. There are not yet enough UK houses to make a proper comparison, although BRE is advising on a London project which has achieved PassivHaus for the same cost as a typical social housing one.

Are PassivHaus products widely available?

Yes but windows have at present time to be imported; they have generally been the reason for higher costs.

Will adopting PassivHaus facilitate compliance with buildings regs and the Code for Sustainable Homes?

Yes. If a compliant design specification is derived from PHPP [the PassivHaus Planning Package] and transposed into SAP, a 30-45% improvement in carbon emissions can be realised - without the use of heat-pump, biomass or other low carbon or renewable technology.

NIE Household Grant for Solar Photovoltaics (PV) and Wind!

To help stimulate the uptake of renewable technologies in Northern Ireland, Northern Ireland Electricity (NIE) will provide support for wind and solar photovoltaics (PV) following the closure of the Low Carbon Buildings Programme Stream 1 grant for renewable electricity technologies in early February 2010. The following grants are available from the NIE SMART programme which is managed by NIE Energy on behalf of NIE:

Technology NIE Grant
Photovoltaics £2,000 per kWp or 30% of the relevant eligible costs, whichever is the lesser amount (Max. £10,000)
Wind £900 per kWp or 30% of the relevant eligible costs, whichever is the lesser amount (Max. £4,500)

Funding will not be available for retrospective installations – only applications submitted from the 8th March 2010 will be eligible for funding from this new grant (PV applications submitted from 19th July 2010 will be eligible for the increased grant levels).

The guidelines for support are available below:

Please note that NIE does not guarantee or underwrite the performance of any technology and it is your responsibility to ask accredited installers (or the manufacturer) what reassurances they can provide in terms of the expected performance of the system.

Clarification on the position of MCS products which are in transition NIE Energy will consider applications from customers who are using an accredited MCS installer (whose details are listed on the MCS website) and an accredited product (even if it is just noted on the MCS website as being in ‘transition’). We have had confirmation from MCS that products which are in ‘transition’ are at some stage in the MCS certification process but we must advise customers and installers that we will be checking each application with MCS to make sure that the manufacturer of the product is actively engaged in the certification process with MCS. Applications may be refused if, after checking with MCS, it is discovered that a manufacturer is not actively pursuing the MCS certification.

It is your responsibility to check with your local authority about whether or not planning permission is required. Please note that you must have received confirmation about planning permission before submitting an application for grant funding from NIE. If you proceed without planning permission then your application will be invalid and you will not be able to claim a grant.

Please note that farmers who are on a domestic tariff with NIE Energy will be eligible to apply for the grant but farmers who are on a business tariff are not eligible.

Please download an application form here and fill it in carefully – you must sign the application form as your agreement to the terms and conditions of the grant. Link Below.

http://www.nie-yourenergy.co.uk/NIE_Household_Application_Form_PV_Wind.doc

Please send your completed application form and a copy of your 2 quotes to:

Delta Hamilton NIE Energy Woodchester House 50 Newforge Lane Belfast BT9 5NW

Then please don’t start work until you have had confirmation from NIE Energy that your application has been successful.

If your application is accepted then you will then receive a grant offer letter – households who proceed with the work without having applied and received a NIE grant offer letter will not receive a grant. There will be no exceptions to this requirement.

This new NIE Household Grant is a limited offer and is available only on a ‘first come, first served’ basis. Some installations will be profiled to raise awareness of the uptake of renewable energy in Northern Ireland.

All grant administration is managed by NIE Energy so if you require any further information about the grant please contact Delta Hamilton by emailing Delta.Hamilton@nieenergy.co.uk.

The Low Carbon Buildings Programme - Energy Saving Trust

If you are a householder in Northern Ireland interested in generating your own heat or electricity, you can apply for a renewable technology grant of up to £2,500 per property. The Low Carbon Buildings Programme incentivises householders interested in fitting their own green energy systems, such as solar photovoltaic’s, wind turbines, small hydro, solar thermal water, ground source heat pumps and Bio energy, by providing grants to contribute towards the cost of installation.

The Programme is funded by the Department of Energy and Climate Change and managed by the Energy Saving Trust. Many people claim that they want to do their bit to help tackle climate change but are put off by the costs associated with renewable technology. By taking advantage of the grants available through the Low Carbon Buildings Programme, homeowners will find small renewable technologies a more affordable option. By installing micro generation technologies, homeowners will not only play a vital role in tackling climate change but will also save themselves money in the long run.

Noel Williams, Head of the Energy Saving Trust Northern Ireland commented: "I am pleased that householders in Northern Ireland have already applied for grants to install green energy technologies through the Low Carbon Buildings Programme and hope that even more people will follow in their footsteps and reduce their carbon footprint."

To be eligible for a grant through the Low Carbon Buildings Programme, consumers must choose a certified product and have it installed by a certified installer.

Top Tips For Achieving An 'A' Rated BER Certificate

What happens if you get a poor rating? There is no legal penalty for getting a bad label for an existing house. From the perspective of a seller or landlord, the effect of such a label can be expected to be a degree of market disadvan­tage in a competitive property market. From the perspective of a householder, it creates an aware­ness of the ongoing running costs, comfort level and environmental impact associated with en­ergy use in the property. There are a number of simple measures that should achieve a good energy rating. Any combination of a number of the measures out lined below should achieve a high B rating. However, to achieve an A BER, almost all of these must be incorporated into the design.

  • Increase insulation in the walls/attic/ floors
  • Install an airtight membrane covering the complete fabric of the house
  • Install advanced energy efficient win­dows/doors with triple glazing.
  • Include measures to achieve controlled, healthy ventilation (Heat Recovery Ven­tilation)
  • Install highly efficient condensing boilers (Under the Building Regulations, from 31 March 2008 all oil and gas fired boilers installed as replacements in existing dwellings must meet a minimum seasonal efficiency of 86 percent, where practica­ble. These boilers are frequently referred to as condensing boilers because of their operation)
  • Insulate the hot water cylinder and all pipe work
  • Install modern heating controls (zoned thermostat controls)
  • Install certain types of renewable energy heating systems (Solar, biomass, geothermal)
  • Specify 100 percent CFL bulbs in your design. When there is 100 per cent CFL bulbs specified, there should be a IO kWh/m2/yr change in figures when cal­culating the BER. This could potentially improve your rating. These bulbs cost from €5-€8 each and can also save you up to €250 per year on electricity.
  • Maximize passive solar design. Passive solar orientated houses are designed to let heat into the building during the winter months and block out the sun during hot summer days. This can be achieved using deciduous trees or bushes to the south of the buildings.

Energy Saving Issues Addressed

NEW energy performance certificates will be compulsory as part of buying a house and architect, Paul McAlister gives his advice and answers your questions. "As an architect I have noticed clients' growing concerns regarding their buildings' energy efficiency. The primary motivation for these concerns are, a wish to preserve our environment, to combat reliance on fossil fuels and decrease our carbon footprints." On the other hand, when presented with the seemingly exponential rise in fuel bills, energy efficiency becomes more than just an abstract idea." In line with these growing concerns, the introduction of compulsory energy performance certificates (EPC's) in Northern Ireland completes the obligation placed by an ED directive on all member states to help improve efficiency.

What are Energy Performance Certificates?

The EPC is similar to the certificates which are currently supplied with household appliances such as refrigerators. It provides each building with two ratings from A (very efficient) to G (very inefficient). The first is based on the performance of the building and its services (i.e. heating and lighting) while the second assesses the building's environmental impact in terms of its carbon dioxide (C 0 2 ) emissions. The certificate also provides a list of recommendations on how to improve your building's rating tailored to its size, age and location.

Why do I need an EPC?

Energy performance certificates will be a legal requirement for anyone wishing to build, sell or rent a property. Also, the certificate is designed to make it much easier to compare the efficiency of different buildings. High efficiency translates into low running costs so if your property achieves a good rating, this will become a unique selling point, making it much more attractive to potential buyers. The penalty for failing to make an EPC available can be anywhere in the region of £500 - £5,000, depending on the value of the property:

When do they come into effect?

EPC's will be compulsory for all house sales in Northern Ireland from the end of June. They will be required for all new constructions from the end of September and all rentals and non-domestic property sales by the end of the year.

How do I improve my rating?

One of the most effective means of reducing your growing utility bills is to replace old boilers with new, more efficient ones this can cut heating costs by some 40 per cent. Fitting double or triple glazing can effectively reduce heat loss while cutting down outside noise levels. Fitting insulation or lagging to hot water pipes and tanks, insulating loft spaces, filling gaps in floorboards and insulating any unfilled cavity walls can all contribute to dramatically improving your efficiency and therefore increasing your EPC rating. It will not be possible to achieve an A rated home without employing various sustainable technologies such as rainwater harvesting and solar water heating.

An architect will be able to provide you with advice on how to build your home to achieve an A-B rating.

Paul is the founder of Paul McAlister Architects based in a converted Barn near Portadown. The practice has vast experience in designing bespoke homes, developments, renovation projects, and energy conscious design. You can contact the practice by email at info@pmcarchitects.com.