Taking Control Of Air tightness

According to the Energy Saving Trust's Chief Executive Philip Sellwood, almost a third of new homes are still failing to meet energy efficiency guidelines. He told the BBC " ... the Government's 'Code for Sustainable Homes' is not being adequately enforced, giving cause for real concern. Our building regulations in the UK are among some of the toughest in Europe, but they are extremely poorly enforced as far as energy efficiency goes".

David Arendell, MD of roof ventilation specialist Klober feels the situation in respect of building air tightness gives grounds for even greater concern. He commented, "In the light of the EST's comments on energy efficiency, it is fair to assume that the level of understanding of how best to achieve air tight construction remains poor.

This is despite the fact that the phrase 'Build tight, ventilate right' has become synonymous with the strategy to achieve low energy buildings. If we don't understand how best to achieve the right balance of air tightness and controlled ventilation, we run the risk of perpetuating condensation problems within the roof space and building fabric. With every upgrade in insulation standards, so the risk increases.

Delays in consultation on Approved Documents Land G have prompted deferment in CSH 2010 until the end of the year, but the clock is undoubtedly ticking towards an ultimate target whereby all new homes achieve CSH Level 6 (effectively zero carbon). However, with house builders having lobbied consistently for tighter definition of how 'zero carbon' can be achieved, the Zero Carbon Task Group was set up.

There is some evidence to support such calls for redefinition. Research carried out in 2007 by the Richard Hodkinson Consultancy, for example, showed that 'PassivHaus' (a Europe-wide Standard with stringent air tightness requirements managed by the BRE and the Energy Saving Trust) would not actually meet CSH 3.

CSH assessment uses the Standard Assessment Procedure (SAP) test to calculate energy performance, and for a number of years there have been questions over the efficacy of the test, especially in relation to more thermally efficient buildings.

In terms of roof design, the requirement already exists for new public sector housing to meet CSH 3. The impetus towards 'zero carbon' will be reinforced when the equivalent of CSH 3 is incorporated into Building Regulations for England and Wales (some authorities indeed have already adopted this requirement). In Scotland, where many elements of the Code have already been incorporated into Building Standards, similar improvements are planned.

Of the nine categories within the CSH method of assessment, that for 'energy and C02 emissions' is by far the most significant. This is true for both the allocation of credits within each category and the final point’s allocations that result from use of weighting factors. 29 credits are available for energy and C02 emissions which, when weighted contributes 36.4% to the total available performance.

The right balance between air tightness and ventilation can certainly be struck without significant addition to building costs. Material choice however, can greatly influence a building's long-term air tightness. Sheet membrane air barriers coupled with sealants, for example, are more effective than sealants alone, counteracting the effects of buildings (particularly timber frame) drying out.

Housing designers can now benefit from Accredited Construction Details (ACDs), Enhanced Construction details (ECDs) and, in Scotland, the Scottish Ecological Design Association Guide for both warm and cold roof construction. Examples of wall/ceiling ACDs include a junction of ceiling level air barrier with masonry inner leaf and warm roof with room in the roof. Accredited detail Sheet MCI RE 02, for example, shows a warm roof detail at the eaves in a non-habitable loft using Klober Permo forte vapor permeable underlay and appropriate tapes (with an alternative pre-taped option).

For non-residential construction, air tightness is just as important, despite the absence of any CSH equivalent. Roofing materials such as zinc, for example, require airtight construction if the metal's underside is unventilated. At the recently build Abergwynfi primary school near Neath, built to achieve a BREEAM 'Excellent' rating, zinc was used on a series of circular roofs. A Klober Wallint air barrier was installed with sealing tape to meet the specified air tightness performance.

With current Building Regulation requirements stipulating air tightness of only 7m3/hr per m2 compared with CSH 3 at 3m3, techniques used to achieve it must undoubtedly change. CPD presentations and literature on the subject are to be welcomed. 'The Code for sustainable Homes and air tightness in roofs' is a CPD presentation from Klober examining how to 'build tight and ventilate right' within the realms of practical pitched roofing construction. Supported by ‘Taking control of air leakage' www.klober.co.uk/air tightness it is a welcome source of information on a subject for which information is otherwise lacking.

By David Arendell, MD of Klober