The Full Monty (Zero-carbon, Passivhaus Primary School)

Montgomery Primary School in Devon is the UK's first zero carbon, climate – change ready school.  Andy Pearson takes a look at the fabric first, 'tea cosy' principles behind the design of this award-winning building.

When it comes to achieving outstanding results Montgomery Primary School, in Exeter, is top of the class. The UK's first zero-carbon school, it is also the country's first Passivhaus school and its first climate-change-ready school. If all that were not enough, this pioneering £8.9 m scheme was recognised by CIBSE at the Building Performance Awards 2014, at which it won the New Build Project of the Year award for schemes under £10m.

The zero-carbon target for the 420-pupil school was set by the client, Devon County Council, in 2008. The council had secured additional funding from the Priority School Building Programme - along with a grant from the Zero Carbon Task Force - to create an exemplar zero-carbon school that would help to increase knowledge and understanding of low-energy school design. The council worked with engineers Hamson JPA, and their architect and quantity surveyor affiliates at NPS Group, plus Exeter University's Centre for Energy and the Environment, to develop the design. The team set out to pioneer a new approach to primary school design. The simplest solution to meeting the client's zero-carbon aspirations would have been to construct a conventional Building Regulations-compliant building, which could be transformed into a zero-carbon solution using a biomass boiler for heat and hot water, and a green electricity tariff for electrical power. Such an approach was considered unsustainable by the design team.

'This solution is without value because it relies on the continued use of precious resources,' says the project's quantity surveyor, Chris Rea, from NPS Group. By contrast, Montgomery Primary School has been designed to minimise its use of resources, so that all energy for heating, lighting and power is generated on site.

“The space heating requirement of the school is now so small that the primary source of heat input is body heat from the pupils and teaching staff”

The starting point for the resource-lean design was to minimise fabric heat losses. The new two-storey school has been built within the grounds of the 1930s primary school it has now replaced. It is oriented north-south, with the majority of classrooms facing north and the more flexible teaching spaces to the south. A double height, central atrium-corridor divides the spaces.  Passivhaus standards were adopted for the design of the building fabric. These set a limit of 120 kWh/m' /year primary energy use, and 15 kWh/m'/year for heating and ventilation - significantly lower than the 55 kWh/m'/year for a typical school. To meet the heating target, the school's walls have been assembled from highly insulated, precast concrete sandwich panels, comprising 100 mm of high performance, rigid foam insulation, sandwiched between a 100 mm-thick concrete inner leaf and 70 mm outer skin.

Concrete was selected for its high thermal mass, which was deemed essential in enabling the step-up from Passivhaus to zero carbon. Pressure to complete the 2,786m2 building in time for the school term forced the design team along the precast, modular route. At the time the modular fabric solution was being developed, building services design was not sufficiently advanced to enable these to be incorporated into the precast units.

On top of the precast walls is precast concrete roof deck, blanketed with 200 mm of extruded polystyrene insulation. Underneath the building is a 150 mm layer of expanded polystyrene to insulate the cast, in-situ raft foundation and floor slab from the ground. 'We've adopted the same principle as a tea cosy, with insulation placed on the outside of the building to allow the thermal mass of the concrete structure to be fully exploited,' explains Rea.

Compliance with Passivhaus standards has ensured the school is exceptionally airtight. 'We followed the maxim "build tight, ventilate right",' says Rea. An air-seal barrier layer was defined in the modular wall, roof and floor constructions at the outset In addition, construction joints were carefully detailed and unavoidable service penetrations and other openings were kept as regular circles or rectangles to match the pipe or duct, and to make them easier to seal. To ensure the detailing was flawless, regular workshops were undertaken with all members of the construction team; for some of the more critical details, samples were prepared and tested on site to verify their performance.

The team's efforts were successful. The Passivhaus air-leakage standard is o.6 air changes per hour at 50 Pa; the focus on air tightness at Montgomery has enabled the building to achieve an impressive 0.28 air changes per hour at 50 Pa.

The fabric-first approach dramatically reduced the space heating requirement of the school. In fact, this is now so small that the primary source of heat input is body heat from the pupils and teaching staff.

A mechanical ventilation system with heat recovery ensures optimal thermal comfort is maintained throughout. Warmed fresh air is supplied to the teaching spaces. This returns to the air handling unit (AHU) through a high-level transfer grille into the building's central atrium-corridor, from where a high-level grille allows the air to return to the AHU in the plant room. This enables excess heat to be moved from high-occupancy spaces to spaces with a lower occupancy and a demand for heat.

Top-up heat is provided by electric heating elements mounted in the air supply ducts. The electric elements are set to operate on manual boost or fabric frost protection only. To protect against overuse, the boost feature is restricted to returning the room to the design set-point temperature. The advantage of this simple heating system is that it has zero losses when not in use and is almost 100% efficient in operation. 'Using electric heaters enabled us to offset this electricity using roof mounted photovoltaic panels.' says Rea.

The ventilation system operates in two modes. In winter, when heat is required, the building is predominantly mechanically ventilated using a variable air-volume strategy under control of the Building Energy Management System (BEMS). This uses temperature and C02 sensors to control dampers to alter the volume of air supplied. The BEMS also varies the speed of the fans in the building's AHU to minimise expended fan energy, while keeping the system in balance.

Energy consumption in the AHU is further minimised by a reversing regenerator unit. This uses two metal heat-exchanger packs to absorb heat from the exhaust air stream, and a series of dampers to reverse the airflow through the unit mechanically, once every minute. Initially, warmed exhaust air passes through one of the aluminium regenerator units, heating it before it is discharged. Simultaneously, cold supply air passes through the other, warmed, regenerator unit, where it picks up heat before it is supplied to the school. After 60 seconds, the control dampers reverse the airflow direction so that the regenerator warmed by the exhaust air now imparts heat to the incoming air, while its twin is regenerated by the warm exhaust air stream. The system is claimed to operate with 93% heat-recovery efficiency.

In summer, the building operates on a natural ventilation strategy. Each classroom has manually opening, triple-glazed windows that allow cool, fresh air to enter the room. This fresh air drives stale, warm air upwards to the transfer grille, and out into the central atrium-corridor, where large roof Iights open under control of the BM S to create a stack-driven, low-pressure, ventilation system. The effectiveness of the design was proven by modelling using IES: Virtual Environment software.

Summertime overheating of the highly insulated school is mitigated by the high thermal mass of the building fabric. In extreme circumstances, the natural ventilation system can operate overnight to remove excess heat to pre-cool the thermal mass for the following day.

In the same way that the building fabric was modularised, so too are the building services. Early involvement of the building services contractor, NG Bailey, enabled the ductwork and lighting assemblies to be supplied as modules and lifted into place. To reduce the lumen output of the lighting, the rooms all have light-coloured walls. In addition, absence detection and daylight sensors turn off lights in unoccupied spaces to minimise energy consumption.

On-site renewable sources are used to enable the school to meet the zero-carbon, in-use target Photovoltaic panels were found to be the most appropriate technology to meet the school's predicted 166,000 Wh/y energy requirement. Around 900 m' of Sanyo HIT N-235 SE10PV of PV panels are located on the south-facing pitch of the roof.  The electricity these generate is fed into the national grid.

Electricity generated by the PVs is not used to heat the hot water, although it is used for the trace-heating system, which keeps the water warm in the distribution pipe work. Instead, the hot water is heated throughout the year by a high-temperature, C02 air source heat pump, which picks up heat from the kitchen extract. Modelling showed this solution to have the lowest overall energy use of all possible options.

To enable the teaching and facilities staff to familiarise themselves with the innovative technologies and solutions employed at the school, the client specified an extended commissioning period in the contract. In addition, the team used the BSRIA Soft Landings approach for the handover and follow-up visits.

'The structure provided by this approach enabled the school staff, design team, client and contractor to work together to identify and resolve issues that - if left unsolved – would have compromised the school's low-energy operation and client's satisfaction with the scheme,' says Rea.

The design complies with the requirements of Building Bulletin 101: Ventilation of School Buildings. Unusually, the school has a 60-year design life. The scheme has been modelled by Exeter University and found to be sufficiently robust to ensure conditions remain comfortable, without overheating in the school, even as the climate changes up to 2080.

“The scheme is sufficiently robust to ensure conditions in the school remain comfortable. even as the climate changes up to 2080”

The scheme was completed in October 2011. Its measured energy performance figures are: 12 kWh/m'/year space heating and 167,358 kWh/ year total energy, including energy used in the kitchen. Despite these outstanding low-energy credentials the building has only managed a DEC band B because of its reliance on electricity for top-up heating. Monitoring has shown that, over the course of a year, the amount of electricity generated by the PVs is equal to that imported from the grid.

From the school's perspective, its carbon neutral performance means that the manager doesn't have to budget for heating and electricity costs over the coming year. Instead, any savings on the utility bills can be used to support future maintenance and educational budgets, to make the school a zero-carbon, self-sustainable, stand-alone environment of learning.

Pearson, A. (2014) ‘The full Monty’, CIBSE Journal, April 2014, pp. 4-8